skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Miyazawa, Masatoshi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Dynamic triggering of earthquakes is when seismic waves from earthquakes induce seismic activity at a distance. The observability of the seismic wave stresses and their results presents a unique opportunity to understand earthquake interactions and associated hazard implications. The extent and timing of dynamic triggering at given specific stress changes still remain inadequately predicted due to limited studies and data sets. In particular, the requirement for complete, well‐characterized catalogs to detect triggering systematically seriously limits the types of studies possible. To address this, we utilized 7‐year continuous waveform data from 239 stations in southern California and used PhaseNet for phase picking to identify local earthquakes and measure triggering without constructing any earthquake catalog. We map the triggering intensity over the region and find that overall, the Mojave segment of the San Andreas is the most easily triggered region. However, the spatial pattern changes after the Ridgecrest earthquake and the area appears to become much less prone to triggering, likely due to an exhaustion of the faults near failure in the immediate aftermath of the Ridgecrest sequence. We further observe a slow decay rate of dynamic triggering and conclude that low‐frequency waves (0.04–0.1 Hz) may be more effective in dynamic triggering than high‐frequency waves (1–3 Hz) which is consistent with a rate‐state assisted aseismic creep or hydrological triggering mechanism. 
    more » « less